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Classical localization and percolation in random environments on trees
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We consider a simple model of transport on a regular tree, whereby species evolve according to the
drift-diffusion equation, and the drift velocity on each branch of the tree is a quenched random variable. The
inverse of the steady-state amplitude at the origin is expressed in terms of a random geometric series whose
convergence or otherwise determines whether the system is localized or delocalized. In a recent paper@P. C.
Bressloffet al., Phys. Rev. Lett.77, 5075~1996!#, exact criteria were presented that enable one to determine
the critical phase boundary for the transition, valid for any distribution of the drift velocities. In this paper we
present a detailed derivation of these criteria, consider a number of examples of interest, and establish a
connection with conventional percolation theory. The latter suggests a wider application of the results to other
models of statistical processes occurring on treelike structures. Generalizations to the case where the underly-
ing tree is irregular in nature are also considered.@S1063-651X~97!12306-6#

PACS number~s!: 64.60.Cn, 05.40.1j, 05.60.1w
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I. INTRODUCTION

Statistical problems defined on treelike structures are
interest for two reasons. First, there are a number of phys
processes for which the underlying topology is quite na
rally treelike in nature. Typical examples are diffusio
limited aggregation, electrodeposition, dielectric breakdow
colloidal aggregation, viscous fingering, and invasion per
lation ~see, e.g., Refs.@1,2#!. Such processes can be model
in terms of transport occurring in a quenched random en
ronment, leading to anomalous behavior, fractal scaling,
critical phenomena. The second reason why treelike top
gies are of interest is that they simplify the analysis co
pared to a study of the same process defined on a reg
lattice. This permits investigations of generic features of
terest that can also, in certain cases, be directly relevan
the regular lattice problem in some appropriate limit. F
example, it is well known that Cayley trees and Bethe l
tices provide insight into the behavior of various proces
on both infinite-dimensional lattices and finite-dimension
lattices in the mean-field limit@3,4#.

In this paper we consider, in detail, the continuum mo
of transport on a regular tree defined in Ref.@5#. In this
model, the evolution of some species of interest is gover
by the drift-diffusion equation, where the drift velocity o
each branch of the tree is chosen at random from some s
fied velocity probability densityr(v). In other words, the
transport takes place in a quenched random environment
initially localized concentration of species around some
lected origin will tend to diffuse away from that origin, bu
can be hindered in that process by the effects of the ran
velocity field. If, in the steady state, the concentration
maining at the origin has not decayed to zero, we say
system is localized. If, on the other hand, the concentratio
the origin does decay to zero, then we say the system
delocalized. By studying the steady-state solution we h
been able to deriveexactcriteria governing whether, for an
arbitrary choice ofr(v), the system is localized or deloca
551063-651X/97/55~6!/6765~11!/$10.00
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ized. The proof is similar to that used to establish theore
regarding the recurrent or transient nature of random wa
on treelike structures. However, we have been able to
further, and have also derived integral equations for vari
distributions of interest.

For particular families of velocity distributionsr ~e.g.,
Bernoulli, Gaussian,G, etc.! characterized by some param
eter~s!, it is possible for the system to be either localized
delocalized, depending on the values of the parameter~s!. In
other words, the system can undergo a phase transitio
some parameter is systematically varied, a transition
turns out to be generically first order in nature rather th
second order. We present a number of examples of this
trinsically interesting phenomenon. The fact that the crite
we obtain are exact and quite general makes them of w
applicability than simply to the physical model used in th
derivation. For example, we establish a close link with va
ous percolation models, showing how the second-order
ture of the geometric percolation transition fits in with th
first-order behavior of more generalized~two-component!
percolation models. We also briefly discuss how certain
sults can be extended to the case of tree structures tha
irregular in nature; e.g., as defined by a genealogical Gal
Watson process with a mean branching number greater
unity.

II. DRIFT DIFFUSION ON A REGULAR TREE

Consider an unbounded regular treeG radiating from a
unique origin with branching numberz and segment length
L ~Fig. 1!. It is convenient to partition the branchesiPG of
the tree into successive generations. The first generatioS1
consists of thez branches connected to the origin, the seco
generationS2 consists of thez2 subsequent branches co
nected to the first generation, and so on. Thenth generation
containszn branches. The set of branches in one genera
connected to a segmentiPG in the preceding generation i
denoted byIi . There is a one-to-one correspondence
6765 © 1997 The American Physical Society
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6766 55BRESSLOFF, DWYER, AND KEARNEY
tween vertices of the treeG ~excluding the origin! and
branches. Therefore, we shall also usei to denote the vertex
whose preceding branch isi . We write i< j if the vertexi is
on the shortest~hence every! path from the origin to vertex
j , and i, j if i< j and iÞ j . Let u i u be the number of
branches on the shortest path from the origin to vertexi . In
particular, foriPSn , u i u5n.

We now describe the drift-diffusion equation on the tr
G. The concentrationci(x,t) at positionx and timet on the
i th segment of the tree evolves according to the equatio

]ci
]t

5D
]2ci
]x2

1v i
]ci
]x

, t.0, 0,x,L, ~2.1!

with the end closer to the origin of the tree chosen to be
x50. Here the diffusion constantD is taken to be the sam
on every branch, andv i is the drift velocity, which is taken
to be positive if directed toward the origin, that is, in th
negative-x direction. Equation~2.1! is supplemented by
boundary conditions expressing continuity of the concen
tion at a node

ci~0,t !5cj~0,t !, i , jPS1 ,
~2.2!

ci~L,t !5cj~0,t !, jPIi , iPG,

and conservation of current through the node

(
kPS1

Jk~0,t !50, Ji~L,t !5 (
kPIi

Jk~0,t !, ~2.3!

where

Ji~x,t !52D]ci /]x2v ici~x,t !. ~2.4!

In this paper, we are interested in the following classi
localization problem: given initial data consisting of a un
impulse located at the origin~or root! of the tree at timet
50, what is the asymptotic behaviour of the on-site amp
tudeF0(t) at the origin? In the absence of drift, it is cle
that the on-site amplitudeF0(t) decays to zero ast→` due
to the effects of diffusion. In other words, the steady state
delocalized. However, as one switches on a positive inwa
drift velocity v, one expects the effects of diffusion awa

FIG. 1. Topologically biased regular tree with branching nu
ber z52 indicating successive generationsS15$ i , j %, S2
5$ i 1 ,i 2 , j 1 , j 2%, etc. AlsoIi5$ i 1 ,i 2%, etc. Arrows indicate direc-
tion of the drift velocityv i on each branchi relative to the origin
O.
t
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from the origin to be counteracted by the drift such th
beyond some critical point there is a nonzero steady st
limt→`F0(t)Þ0. The system is then said to be localize
The critical point will depend on the coordination numb
z since the delocalizing effect of diffusion grows withz. An
analogous problem was previously investigated within
context of biased random walks on a Bethe lattice, both
discrete time@6# and continuous time@7,8#. A preliminary
version of our analysis was presented in Ref.@5#. For conve-
nience, we shall setD5L51 throughout.

In steady state the current vanishes on each segmenJi
[0, so that the solution is of the form

ci~x!5Aie
2v i x. ~2.5!

The continuity conditions~2.2! imply that the amplitudes
Ai satisfy the iterative equations

Ai5F0 for iPS1 ,
~2.6!

Aie
2v i5Aj for all jPIi , iPG.

Thus the amplitudeAi on a given segmentiPSn ,n.1 may
be expressed in terms of the steady-state concentration a
origin F0 according to the relation

Ai5F)
j, i

e2v j GF0 . ~2.7!

Assuming that the initial concentration is normalized
unity, conservation of particle number implies that

(
iPG

E
0

1

ci~x!dx51. ~2.8!

Equation~2.5! then yields the following equation forF0 :

F0
215 (

iPS1
S f ~v i !1g~v i ! (

jPIi
f ~v j !

1g~v i ! (
jPIi

g~v j ! (
kPIj

f ~vk!1••• D , ~2.9!

where

f ~v !5
@12e2v#

v
, g~v !5e2v. ~2.10!

Equation~2.9! expressesF0
21 in terms of an infinite series. If

this series is convergent thenF0 has a finite value, and the
steady state is localized. On the other hand, if the se
diverges, thenF050, and the steady state is delocalized.

The simplest case to analyze is when all drift velocit
are the same,v i5v for all i . Then Eq.~2.9! reduces to the
geometric series

F0
215 f ~v ! (

p50

`

zp11g~v !p. ~2.11!

Equation~2.11! leads to the following localization criterion
a nonzero steady state occurs, that is, limt→`F0(t).0, if the

-
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55 6767CLASSICAL LOCALIZATION AND PERCOLATION IN . . .
infinite series on the right-hand side of Eq.~2.11! is conver-
gent. This yields the critical velocity

vc5 lnz, ~2.12!

and, forv.vc ,

lim
t→`

F0~ t !5
z f~v !

12zg~v !
. ~2.13!

If v,vc then the asymptotic decay of the delocalized st
exhibits conventional behavior, whereas at the critical po
v5vc there is anomalous behavior in the form of a critic
slowing down@9#.

Now suppose that the drift velocitiesv i are quenched ran
dom variables independently and identically distributed fr
a given probability densityr(v). Also assume thatv i is
finite with probability 1. The right-hand side of Eq.~2.9!
becomes a~generalized! random geometric series whos
convergence properties determine whether or not the ste
state is localized. Naively averaging both sides of Eq.~2.9!
with respect to thev i ’s, and introducing the notation
^X(v)&5*r(v)X(v)dv for any measurable function ofv,

^F0
21&5z^ f ~v !& (

n50

`

zn^g~v !&n5
z^ f ~v !&

12z^g~v !&
. ~2.14!

Equation ~2.14! shows thatF0
21,` with probability 1,

when z^g(v)&,1. However, the fact that̂F0
21&→` as

z^g(v)&→1 does not necessarily imply thatF0→0 ~that the
steady state becomes delocalized!. For the random series, Eq
~2.9! may converge to a random variable whose probabi
distribution has a long tail with infinite first and higher m
ments. In Sec. III we shall prove that there exists a sh
first-order phase transition between localized and delocal
states, and determine the location of the transition point
an arbitrary densityr(v), assuming that eachv i is finite with
probability 1. The case of densitiesr(v) for which there is a
nonzero probability thatv i is infinite, and hence a nonzer
probability that there exist broken bonds on the tree~the
percolation limit!, will be discussed in Sec. IV.

III. LOCALIZATION-DELOCALIZATION TRANSITION

A. One-dimensional case„z51…

Whenz51, Eq. ~2.9! simplifies to the form

~F0!
21[R5 (

n51

`

f ~vn! )
m51

n21

g~vm!, ~3.1!

so that the steady-state concentration is expressed in term
a random geometric seriesR. Similar series have arisen in
variety of studies of one-dimensional problems in phys
@2,10–13# and probability theory@14–16#. The random se-
riesR may be generated from the following random diffe
ence equation:

Yn
~N!5g~vn!Yn11

~N! 1 f ~vn!, n51,...,N21, ~3.2!

with each pair„f (vn),g(vn)… generated independently from
r(v) andYN

(N) fixed. It can be proven that, if̂ln@g(v)#&,0
e
t
l

dy

y

p
d
r

of

s

~or ^v&.0!, then limN→`Y1
(N)5R exists with probability 1

and the distribution ofY1
(N) converges to that ofR indepen-

dently ofYN
(N) @15#. Hence the steady state is localized pr

vided that^v&.0; that is, the average drift velocity exceed
the critical velocity for localization in the case of uniform
one-dimensional drift@see Eq.~2.12!#. On the other hand, if
^v&,0, thenR is infinite, and the steady state is delocalize

In the language of phase transitions, there is a transi
from a localized to a delocalized state at the critical poi
^v&50. The critical points determine a phase boundary
the infinite-dimensional space of probability densitiesr(v)
that separates the localized and delocalized phases. A c
acteristic feature of the phase transition is that, as^v&→01

in some prescribed fashion, the probability distributionF of
R in the localized phase develops a long tail for which
moments are infinite. This is a consequence of the fact t
when the first moment becomes infinite, the system can
be localized. To see this, first note from Eq.~2.14! with z
51 that

E r dF~r !5
^ f ~v !&

12^g~v !&
, ~3.3!

which becomes infinite when̂g(v)&51. Jensen’s inequality
^e2v&>e2^v& then implies that̂v&>0 when^g(v)&51. As-
suming the existence of a probability densityC(r ) such that
dF(r )5C(r )dr, from Eq. ~3.2! we obtain the following
Dyson-Schmidt-type integral equation forC:

C~r !5E
2`

` r~v !

g~v !
CS r2 f ~v !

g~v ! Ddv. ~3.4!

An alternative form of the integral equation~3.4! is obtained
by taking Laplace transforms

M ~s!5E
2`

`

r~v !M „g~v !s…e2s f~v !dv, ~3.5!

with

M ~s!5E
0

`

e2srC~r !dr. ~3.6!

It is not generally possible to solve these equations a
lytically. However, one can determine the asymptotic beh
ior of C when r is large. For the moment assume th
r(v) is nonarithmetic, that is, it cannot be written in the for

r~v !5 (
n52`

`

pnd~v2ln! ~3.7!

for anyl and$pn% such that(n52`
` pn51. Also assume tha

^v&.0, and that the first moment ofC is infinite so that
^g(v)&.1. It can then be proven@16# that there exist posi-
tive constantsa ands, with 0,s,1, such that

C~r !;ar2s21 ~3.8!

for large r , and hence

M ~s!;11bss ~3.9!
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for small s. The large-r behavior ofC ensures that, ifs
.0, then

F*[ lim
y→`

E
y

`

dF~r !50. ~3.10!

That is, the seriesR of Eq. ~3.1! is convergent with probabil-
ity 1.

Substitution of the asymptotic form forC ~orM ! into Eq.
~3.4! @or Eq. ~3.5!# leads to the equation

b~s![^g~v !s&51 ~3.11!

Useful information concerning the nature of the localizatio
delocalization transition can be deduced from Eq.~3.11!
@12,13#. First note thatb(0)51 andb(s) is a convex func-
tion for reals. If ^v&.0 thenb8(0),0 and there are two
possibilities concerning nontrivial solutions of Eq.~3.11!.

~i! b(s),1 for any positive reals. Since

ub~s!u<E r~v !e2Re~s!vdv5b„Re~s!…, ~3.12!

b(s)Þ1 for all s; the densityC(r ) decreases faster tha
any power ofr ~finite first moment!.

~ii ! There exists a single nontrivial real solutions̄ of Eq.
~3.11!. Equation~3.12! implies thatb(s)Þ1 within the strip
0,Re(s),s̄, but there may exist complex roots of E
~3.12! s5s i , say, with Re(si)>s̄. For the special class o
densities satisfying Eq.~3.7!, there exist an infinite numbe
of complex roots with Re(si)5s̄ and the asymptotic behav
ior of C is no longer a simple stable law~see the example o
a Bernoulli distribution below!. For all other densities
r(v), all the complex roots satisfy Re(s).s̄, and the non-
trivial real root s̄ dominates for larger .

Equation~3.11! provides a useful perspective concerni
the approach to the transition point. Suppose thatr(v) de-
pends smoothly on some parameterl such thats̄(l).0 for
l,lc and liml→lc

s̄(l)50. In the limit l→lc , C ceases
to exist ~it is no longer normalizable! and the probability
F* thatR is infinite jumps fromF*50 to F*51. Identify-
ing F* as an order parameter, we deduce that
localization-delocalization phase transition is first order. D
ferentiating the equationb„s̄(l),l…51 with respect tol
gives

E drl~v !

dl
@g~v !# s̄~l!dv1s̄8~l!^@g~v !# s̄~l!ln@g~v !#&l

50. ~3.13!

Taking the limit l→lc in Eq. ~3.13! leads to the resul
s̄8(lc)^v&lc

50. Sincelc is a bifurcation point, it follows

that s̄8(lc).0 and hencêv&lc
50. A simple illustration of

these ideas is given in Fig. 2, whereb~s! is shown for
r(v) chosen to be a Gaussian with meanm and variance
D2:

r~v !5
1

A2pD2
expS 2

~v2m!2

2D2 D . ~3.14!
-

e
-

Substituting Eq.~3.14! into Eq. ~3.11! gives

b~s!5exp~2ms1s2D2/2!. ~3.15!

For m.0, b~s! has a single minimum ats*5m/D2 and
b(s̄)51 for s̄52m/D2. As m→0, s̄(m)→0, and a
localization-delocalization phase transition occurs.

As an example of an arithmetic probability density sat
fying Eq. ~3.7!, consider the Bernoulli distribution with den
sity r(v)5pd(v2a)1(12p)d(v2 v̄) with a,0 and
v̄→`. It is clear that the system is localized with probabili
1, since the percolation threshold in one dimension ispc
51. Here one can find explicitly the densityC(r ) satisfying
Eq. ~3.4! using a similar analysis to Refs.@12,13#,

C~r !5~12p! (
n50

`

pnd~r2r n!, ~3.16!

where r n satisfies the recursionr n5g(a)r n211 f (a) with
r 050. Hence, r n5 f (a)(g(a)n21)/„g(a)21…. Since the
Bernoulli distribution is arithmetic, the asymptotic behavi
of C is no longer a simple stable law. To show this, it
more convenient to look at the asymptotic behavior of
distribution F(y)5(12p)(n50

` pnu(r n2y), where u is a
step function. For largey, F(y) has the asymptotic form
F(y);y2 s̄c(j), wheres̄52 lnp/lng(a), andc is a periodic
function of j5@ lny2lnf(a)#/lng(a) with unit period:

c~j!5 f ~a! s̄~12p! (
n52`

`

es̄ ~j2n!ln g~a!

3uS n2
ln„g~a!21…

ln g~a!
2j D . ~3.17!

One can understand the origins of this periodic behavior
noting that the equationb(s)51 reduces to the simple re
lation pg(a)s51, which for a,0 has the infinite set of
complex solutionss52 lnp/lng(a)1„2p i / lng(a)…k, integer
k; all solutions have the same real part.

Note that the above results are easily extended to the
of a regular tree with branching numberz.1 and so-called
intergenerationaldisorder @5#. Here all segments within a
generationn have the same drift velocityvn but the sequence
$vn ,n>1% is independently and identically distributed a
cording to a given densityr(v). The only modification is

FIG. 2. Plot of the functionb~s! for a Gaussian distribution
with various meansm50, 0.2, and 0.5, and fixed varianceD251.
As m→0, the nontrivial solutions̄→0, whereb(s̄)51, signaling a
localization-delocalization phase transition in the case of a o
dimensional system (z51).



-

ch

ly
e

d

-

c

th
er

a-
-

f of

a
-
rift

.
te-
s

ift
first

hat

m
use

n-
ns.

e
r-

as

w

55 6769CLASSICAL LOCALIZATION AND PERCOLATION IN . . .
thatg(v) is replaced everywhere byzg(v). In particular, Eq.
~3.11! becomes zs^g(v)s&51, and the localization-
delocalization transition point now satisfies^v&5 lnz. The
analysis differs considerably from the casez.1, in which
there is full intragenerationaldisorder, as we shall now de
scribe.

B. Casez>1

Consider a bounded treeGN with branching numberz
.1 consisting ofN generations, and associate with ea
segmenti a random variableYi

(N) such that~for fixed Yk
(N),

kPSN!

Yi
~N!5 (

jPIi
g~v i !Yj

~N!1 f ~v i !, iPGN . ~3.18!

Equation~2.9! may then be rewritten in the form

F0
215 (

iPS1
Ri , Ri5 lim

N→`

Yi
~N! . ~3.19!

Suppose thatRi converges with probability 1 independent
of the boundary conditions. The symmetry of the tree th
ensures that all variablesRi , iPS1 , are identically and in-
dependently distributed with a probability distributionF.
The difference equation~3.18! implies that the associate
probability density C ~assuming it exists! satisfies the
Dyson-Schmidt-type integral equation

C~y!5E
0

`

)
j51

z

C~yj !dyjE
2`

`

r~v !

3dS y2g~v !(
j51

z

yj2 f ~v !D dv. ~3.20!

Laplace transforming Eq.~3.20! gives a corresponding inte
gral equation for the generating functionM (s):

M ~s!5E
2`

`

r~v !@M „sg~v !…#ze2s f~v !dv. ~3.21!

Suppose that we expand the generating functionM (s) for
small s along similar lines to the one-dimensional case su
thatM (s);11bss. Substituting into Eq.~3.21! yields the
equation

b~s![^g~v !s&5z21. ~3.22!

When z.1, s50 is not an allowed root of Eq.~3.22!.
Therefore, in contrast to the one-dimensional case,
localization-delocalization transition is no longer charact
ized by the limit s̄→0, wheres̄ is a nontrivial solution of
Eq. ~3.22!. Introduce the indexs*P@0,1# defined according
to the property

b~s* !5 min
0<s<1

b~s!. ~3.23!

Note thats* only depends on the probability densityr(v).
If zb(s* ).1, then any solution ofzb(s)51 must satisfy
s.1 implying that the first moment ofC is finite. On the
n

h

e
-

other hand, ifzb(s* ).1 thenz^g(v)&.1, and Eq.~2.14!
implies that the first moment is infinite. The evident contr
diction shows that ifzb(s* ).1, then the only allowed so
lution of the integral equation~3.21! for s.0 is M (s)50
and the system is delocalized. This gives a heuristic proo
part ~ii ! of the following theorem.

Theorem 1: Consider the drift-diffusion equation on
regular treeG with the drift velocities identically and inde
pendently distributed on each branch. Assume that the d
velocities are finite with probability one. Letb(s* ) be de-
fined according to Eq.~3.23!. ~i! If zb(s* ),1, then the
steady state is localized with probability 1.~ii ! If zb(s* )
.1 then the steady state is delocalized with probability 1

Part ~i! of this theorem can be established from the in
gral equation~3.21! in the special case that all drift velocitie
are restricted to be positive. Sinceb~s! is then a monotoni-
cally decreasing function ofs, it follows that s*51. If
zb(s* ),1, then all moments ofC are finite@cf. Eq.~2.14!#,
and the system is localized. It follows that for positive dr
velocities the system becomes delocalized as soon as the
moment ofC becomes infinite, and henceC does not de-
velop a long tail near the transition point.

We shall now present a rigorous proof of theorem 1 t
holds for arbitrary distributionsr(v). Our proof is based on
a reformulation of the problem in terms of flows in rando
electrical or capacitative networks. This then allows us to
some recent results due to Lyons@17# and Lyons and Pe-
mantle @18# concerning random walks in random enviro
ments. It is first necessary to introduce some new definitio
For each branchiPG, set

Ci5F)
j, i

g~v j !G f ~v i !. ~3.24!

We refer toCi as the ‘‘conductance’’ or ‘‘capacity’’ of
branch i . Next define aflow u on G to be a set of non-
negative numbers$u i ,iPG%, such that, for alliPG,

u i5 (
jPIi

u j . ~3.25!

Define acutsetP to be a finite set of vertices excluding th
origin such that every path from the origin to infinity inte
sectsP and such that there is no pairi , jPP with i, j . The
shortest distance of a cutset from the origin is written
uPu5min$uiu,iPP%. A special example of a cutset is thenth
generationSn , n>1. It follows from Eq.~3.25! that, for any
cutsetP,

u~0![ (
iPS1

u i5 (
jPP

u j . ~3.26!

If u(0)51 thenu is called aunit flow. Finally, define the
energyof a flow for a tree with conductancesCi to be

E~u!5(
iPG

u i
2Ci

21. ~3.27!

A useful result concerning flows is the maximum-flo
minimum-cut theorem@19#: given a non-negative set$wi ,i
PG% such that
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lim
uPu→`

inf (
jPP

wj.0,

then there exists a nonzero flowu such that, for alliPG,
u i<wi .

Proof of theorem 1. Rewrite the expression for the stea
state amplitude at the origin, Eq.~2.9!, in the form

F0
21[C5 (

iPS1
f ~v i !1 (

iPS1
g~v i ! (

jPIi
f ~v j !

1 (
iPS1

g~v i ! (
jPIi

g~v j ! (
kPIj

f ~vk!1•••

5 (
iPS1

Ci1 (
iPS2

Ci1•••

5(
iPG

Ci . ~3.28!

Hence, the steady state is localized if and only if the su
mation over all conductances is finite.

~i! This follows along similar lines to the proof of theore
1~iii ! in Ref. @18#. Define b̄(s* )5^ f (v)s* &. Suppose
b(s* ),1/z. Then

K (
iPG

Ci
s* L 5(

iPg
K)
j, i

g~v j !
s* L ^ f ~v i !

s* &

5b̄~s* !(
iPg

)
j, i

^g~v j !
s* &

5b̄~s* ! (
n>1

(
iPSn

b~s* !n21

5
b̄~s* !

b~s* ! (
n>1

znb~s* !n

5
zb̄~s* !

12zb~s* !

,`

It follows that ( iPGCi
s*,` with probability 1, and hence

thatCi,1 for all but finitely manyiPG. SinceCi
s*<Ci for

Ci,1, we deduce that( iPGCi,` and the steady state i
localized with probability 1.

~ii ! Supposezb(s* ).1. Proceeding along similar line
to the proof of theorem 1~i! in Ref. @18#, one can show tha
zb(s* ).1 implies that, with probability 1, there exist pos
tive numberswn such that(n>1wn,` and

lim
upu→`

inf (
jPP

wu j uCj.0.

It then follows from the maximum-flow minimum-cut theo
rem that there exists a flowu obeying u i<wnCi for all i
PSn andn>1. We shall show that the existence of such
flow implies that the total conductance is infinite, and hen
y-

-

e

that the steady state is localized~cf. the proof of Corollary
4.2 in Ref. @17#!. First note that the flow has finite energ
That is,

E~u!5 (
jPG

u j
2Cj

215 (
n>1

(
jPSn

u j~u jCj
21!

< (
n>1

wn (
jPSn

u j5u~0! (
n>1

wn

,`,

where we have used Eq.~3.26!. The Cauchy-Schwartz in
equality shows that

S (
jPSn

u j D 2<S (
jPSn

Cj D S (
jPSn

u j
2Cj

21D .
The finite energy ofu implies that ( jPSn

u j
2Cj

21→0 as

n→`. Sinceu~0! is nonzero, it follows from Eq.~3.26! that

lim
n→`

(
jPSn

Cj5`,

and henceC5` with probability 1.
Remark 1.Theorem 1 establishes that there is a first-or

phase transition from a localized to a delocalized state at
critical pointssc*.0, wherezb(sc* )51. This determines a
phase boundary in the space of probability densities
separates the localized and delocalized phases. An intere
question concerns what happens on the phase bounda
self. That is, given a probability densityr(v) such that
z^e2s* v&51, is the steady state localized or delocalized?
present this remains an open problem.

Remark 2.One of the assumptions of theorem 1 is that t
drift velocitiesv i are finite with probability 1. If this restric-
tion is removed so that there is a nonzero probability t
v i is infinite, then one has a bond percolation problem sin
f (`)5g(`)50. That is, segments with infinite drift veloci
ties act as broken bonds. It turns out that theorem 1
holds provided that the statement ‘‘with probability 1’’ i
case~ii ! is replaced by ‘‘with positive probability’’@17#. Al-
ternatively, we can state that in case~ii ! there is some vertex
in G at which the steady state is delocalized with probabi
1. A more detailed discussion of the percolation limit is pr
sented in Sec. IV.

Remark 3.Theorem 1 can be generalized to the case of
irregular unbounded treeG by defining thebranching num-
ber of G according to@17#

B~G!5 infH z.0;inf
P

(
iPP

z2u i u50J ~3.29!

HereB(G) is a measure of the average number of branc
per vertex ofG. For a fixed z, one first definesF(z,P)
5( iPPz2u i u, whereu i u is the distance from the origin of a
given elementi of a given cutsetP. One then finds the
smallest value ofz for whichF(z,P) attains its lower bound
of zero for at least one cutset. It is easy to show thatB(G)
5z for a regular tree. Simply takeP to be a given generation
n such that F(z,P)5znz2n, and use the fact tha
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limn→`z
nz2n50 if z,z. The result then follows since on

can also show that no other cutsetP givesF(z,P)50 for
z.z. The branching number is less than or equal to
so-called growth rate

G~G!5 lim
n→`

infMn
1/n ~3.30!

whereMn is the number of branches in thenth generation. A
tree is said to be quasispherical ifB(G)5G(G). For a regular
tree we again haveG(G)5z sinceMn5zn. Another interest-
ing example is a genealogical tree generated by a sim
Galton-Watson branching process; starting from the r
each vertex hask branches with probabilitypk ((kpk51).
The average number of branches per vertex ism5(kkpk . A
well-known result is that the branching process becomes
tinct ~the associated genealogical tree is finite! with probabil-
ity 1 if m<1 @20#. It can be shown that for a branchin
process withm.1 and given that the process does not b
come extinct, the associated~infinite! genealogical tree is
quasispherical and has branching numberm with probability
1 @17#.

Using definitions~3.29! and~3.30!, theorem 1 can now be
applied to an irregular tree on replacingz by G(G) in part ~i!
and byB(G) in part ~ii !. In the case of nonquasispheric
trees, the theorem is not sufficient to determine the pre
location of the localization-delocalization transition poin
However, we expect the transition point to be given
qb(s* )51 for someqP@B(G),G(G)#. Also note that for
irregular trees it is no longer possible to construct a Dys
Schmidt-type integral equation analogous to Eq.~3.20!, since
the existence of such an equation relied on the recur
structure of a regular tree.

Remark 4.The proof of theorem 1 exploits the fact th
the problem of localization or delocalization of the stea
state of the drift-diffusion equation on a treeG can be
mapped onto an analogous problem concerning flows on
tree. A similar connection exists between flows and rand
walks on G @17,18#. To see this, introduce the transitio
probabilitiesPi j5Prob@ i→ j # between nearest-neighbor ve
tices on the tree. Denote the first vertex on the shortest
from i to the origin byi 8, and set~for u i u>2!

Xi52 ln
Pi 8 i

Pi 8 i 9
, ~3.31!

andXi52 lnP0i for all iPS1 . Assume thatXi are indepen-
dently and identically distributed. Introduce the conductan

Ci5)
j< i

e2Xj . ~3.32!

Note that the transition probabilities can be recovered fr
Eq. ~3.32! according to

Pii 85
Ci

Ci1( jPIiCj
, Pi 8 i5

Ci

Ci 81( jPIi 8
Cj

. ~3.33!

Consider a random walk onG starting from the origin. The
random walk is said to berecurrent if the probability of
returning to the origin is equal to 1. Otherwise the rand
e

le
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walk is said to betransient.Let f 0(n) be the probability of
first returning to the origin inn steps and define themean
recurrence timeaccording tom05(n51

` n f0(n). A recurrent
random walk is said to benull if m05` andpositive if m0
,`. One then has the following result due to Lyons a
Pemantle@17,18#.

Theorem 2: Consider a random walk on a treeG with
quenched random transition probabilities as described ab
Assume thatXi is finite w.p.1. Let b(s)5^e2sX& and
b(s* )5min0<s<1b(s). ~i! If G(G)b(s* ),1, then the ran-
dom walk is positive recurrent with probability 1.~ii ! If
B(G)b(s* ).1, then the random walk is transient wit
probability 1.

C. Examples

We shall now consider the localization-delocalizati
phase boundary for some particular choices of the velo
probability densityr(v). In the case of the Bernoulli, Gauss
ian, andG distributions, we determine the phase boundary
a curve in the~m,D! plane, wherem andD are the mean and
standard deviations, respectively. This is achieved first
finding s* as defined in Eq.~3.23! and then by solving the
equationb(s* )51/z. All three boundary curves meet at th
critical point (m,D)5(lnz,0) since this corresponds to th
case of uniform drift; see Eq.~2.12!. We then consider an
example of a probability density that does not possess
finite moments. Nevertheless, one can still identify para
eters characterizing the location and width of the~unimodal!
distribution, which play an analogous role to the mean a
variance.

Example 1—Bernoulli distribution. Consider a Bernoulli
distributionB(p,u1 ,u2) with

r~v !5pd~v1u2!1qd~v2u1!, u2 ,u1>0, q512p.
~3.34!

From Eq.~3.22!,

b~s!5pesu21qe2su1. ~3.35!

For this example there are three possibilities.
~i! If

qu1

pu2
,1, ~3.36!

thens*50, b(s* )51.1/z, and the system is delocalize
according to theorem 1~ii !.

~ii ! If

eu11u2,
qu1

pu2
, ~3.37!

thens*51 and the phase boundary in (p,u1 ,u2)-space is
given implicitly by the equation

peu21qe2u15z21. ~3.38!

~iii ! If

1,
qu1

pu2
,eu11u2, ~3.39!
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then 0,s*,1 and the phase boundary is given implicit
by the equation

q~u11u2!

u2
Fpu2

qu1
Gu1 /~u11u2!

5z21. ~3.40!

The phase boundary in the special caseu250,
u15 v̄.0 is characterized completely by Eq.~3.38!, which
reduces to a curve in the (p,v̄) plane:

v̄~p!5 lnS 12p

z212pD . ~3.41!

It is useful to consider the corresponding curve in the~m,D!
plane, wherem5qv̄ is the mean andD5Apqv̄ is the stan-
dard deviation:

D~m!5Ax~m!2m2, ~3.42!

wherex(m) is the solution to the transcendental equation

~12z21!x1m2e2x/m5m2 ~3.43!

The trivial solution of Eq.~3.43!, x(m)50, is excluded since
this would give a nonreal variance. There exists a uniq
nonzero solution to Eq.~3.43! with x(m)>m2 andD~m! real
if and only if m> lnz. For m' lnz the solutionD~m! has the
approximate form

D~m!' lnzS m2 lnz

z2 lnz21D
1/2

. ~3.44!

The phase boundary in the~m,D! plane is shown in Fig. 3~a!.
Example 2—Gaussian distribution. Consider the Gaussia

distributionN(m,D) with density~3.14!. The functionb~s!
is given by Eq.~3.15!. Here one finds thats*5m/D2 if m
,D2 ands*51 if m>D2. This leads to the following ex-
plicit expressions for the phase boundary:

D~m!5A2~m2 lnz! for mP@ lnz,2 lnz#, ~3.45!

D~m!5m/A2 lnz for m.2 lnz. ~3.46!

The resulting phase boundary is shown in Fig. 3~c!.
Example 3—G distribution. Consider the Gamma distribu

FIG. 3. Phase diagram showing localization-delocalizat
phase boundaries for various distributions of drift velocities:~a!
Bernoulli, ~b! G, ~c! Gaussian. In each case the system is delo
ized in the region on the left of the phase boundary and localize
the right-hand region. The detailed shape of the curves depend
the value ofz; here we have setz52.
e

tion G(l,b) with density

r~v !5
lb

G~b!
vb21e2lv, v>0, ~3.47!

whereG(b) is the Gamma function

G~b!5E
0

`

xb21e2xdx. ~3.48!

If b51, thenv is exponentially distributed with paramete
v. Also note that ifl5 1

2 and b5n/2 for some integern,
thenv is said to have the chi-squared distributionx2(n) with
n degrees of freedom. Sincev>0 we know thats*51
@b~s! is a monotonically decreasing function ofs#. Thus the
phase boundary in the (l,b) plane is given implicitly by

lb

~11l!b
5z21. ~3.49!

Using the fact that the meanm5b/l and the varianceD2

5b/l2, Eq. ~3.49! can be rewritten as

11
D2

m
5zD2/m2

. ~3.50!

As in the previous examples, Eq.~3.50! only has a nontrivial
solutionD~m! if m> lnz. In the limit D→0, m→ lnz and Eq.
~3.50! reduces to

D~m!'A2~m2 lnz! for m' lnz. ~3.51!

The phase boundary is shown in Fig. 3~b!.
The similarity in the behavior of theG distribution to the

Gaussian distribution close to the critical point (lnz,0) can be
understood in terms of a cumulant expansion ofb~s! under
the assumption that all the moments of the densityr(v) are
finite. That is, write

b~s!5e2w~s!, ~3.52!

with

w~s!5 (
k50

wk

k!
sk, ~3.53!

such that

w050, w15m, w252D2,

w35^v3&23mD22m3,... . ~3.54!

Assume thatm.0 and the fluctuations are small such th
m@D2. Further, assume thatD2@wk for all k.2, which is
true for unimodal distributions such as theG distribution.~In
the case of a Gaussianwk[0 for all k.2!. Neglecting third
and higher moments in the cumulant expansion~3.53! then
leads to the approximation

b~s!'e2sm1s2D2/2. ~3.55!

Sincem@D2, it follows thats*51 and the equation for the
phase boundary,b(s* )51/z, reduces to Eq.~3.51!.

Example 4.As our final example we consider a probab
ity density whose moments are all infinite:
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r~v !5
a

2Ap~v1b!3
e2a2/4~v1b!, v.2b, b.0.

~3.56!

From Eq.~3.22!,

b~s!5ebs2aAs. ~3.57!

If a.2b, then s*51, and the phase boundary in th
(a,b) plane is given by

b~a!5a2 lnz. ~3.58!

On the other hand, ifa,2b, then s*5a2/4b2, and the
phase boundary is given by

b~a!5a2/4 lnz. ~3.59!

Comparing Eqs.~3.45! and~3.46! with Eqs.~3.58! and~3.59!
then shows that the density~3.56! has a phase boundar
curve identical to that of a GaussianN(a,A2b).

It is interesting to consider from the above examples h
one can recover the critical phase boundary in one dimen
(z51). The relevant criterion iŝv&50 ~see Sec. III A!,
which corresponds to the vertical linem50. The correct pro-
cedure is to definez511e, and analytically continue suc
thate→0. To show that the phase boundaries derived for
examples above tend toward the linem50 ase→0, consider
a fixed value ofm5d.e, and ask what happens to the sta
dard deviationD ase→0. It is easy to show thatD diverges
as 1/Ae. Since this holds for anyd, it is clear that all the
boundary curves collapse to the linem50. It also follows
that the region of validity of the expansions around the po
m5 lnz becomes progressively smaller ase→0. The math-
ematical details concerning this particular issue will be d
cussed more fully elsewhere@21#.

IV. PERCOLATION ON A TREE

The results presented above have a number of impor
implications for percolation theory. Although, in essence,
ready covered in the detailed mathematical work of Lyo
@17#, it is nevertheless instructive to point out these conn
tions and to discuss their physical interpretation.

The classic problem of bond percolation on an infini
regular Cayley tree with branching numberz is well under-
stood. Branches are randomly occupied~unit capacity! with
probability p or left unoccupied~zero capacity! with prob-
ability 12p. One is interested in establishing whether or n
a connection from the origin to infinity is made, i.e., wheth
or not the origin is linked to a connected cluster of infin
capacity. Arguments based on generating functions~see, e.g.,
Ref. @1#! show that the critical concentrationpc for the for-
mation of an infinite cluster is given bypc51/z. For p
,pc an infinite cluster is never formed; forp.pc there is a
nonzero probability that the origin will belong to an infini
cluster, and this probability becomes unity whenp51. Thus
if the probability of the origin belonging to an infinite cluste
is viewed as an order parameter, then geometric bond pe
lation exhibits a second-order phase transition.

In the present paper we also considered infinite, reg
trees, whereby each branchi is characterized by a velocit
on
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parameterv i and has an associated capacity~or conductance!
f (v i)P jg(v j ) @Eq. ~3.24!#. The localization criterion of theo-
rem 1, z^e2s* v&,1 ~localized! or z^e2s* v&.1 ~delocal-
ized!, is equivalent to whether the total capacity~or conduc-
tance! on the tree is finite or infinite ~related to
normalizability!. To make the connection with geometr
bond percolation, consider a Bernoulli distribution with de
sity

r~v !5pd~v !1~12p!d~v2 v̄ !. ~4.1!

Any branch withv50 that is connected to the origin b
other branches withv50 will act as a bond of unit capacity
@since f (0)5g(0)51#. On the other hand, in the limi
v̄→`, each branch withv5 v̄ will act as a broken bond o
zero capacity@sincef (`)50#, and will set the capacity of al
subsequent branches equal to zero@sinceg(`)50#. Thus, in
terms of whether the origin belongs to a cluster of finite
infinite capacity, we have an identical model to that of ge
metric bond percolation. Since the allowed velocities in E
~4.1! are non-negative,s*51 and the threshold for the tran
sition is determined byz^e2v&51 ~see remark 2 in Sec
II B !. It follows immediately thatpcz51 or pc51/z. When
pc,1/z the system is localized~has finite capacity! with
probability 1, andF*50 @see Eq.~3.10!#. Whenpc.1/z the
system may either be localized~finite capacity! or delocal-
ized ~infinite capacity! and 0,F*,1 ~see again remark 2 in
Sec. III B!, which corresponds to the transition being seco
order with F* identified as an order parameter. From t
integral equation~3.21! we obtainM (s)5pM(s)ze2s1(1
2p) @noting thatM (0)[1#, from which one can derive the
value of the order parameterF*512 lims→0M (s). For in-
stance, whenz52 one obtains the well-known result tha
F*50 for p, 1

2 andF*5(2p21)/2p for p. 1
2 @1#.

The above derivation puts the nature of the phase tra
tion of geometric bond percolation into context. For almo
all parametrized velocity distributions~i.e., those which do
not allow v to be infinite with any finite probability!, the
transition governing whether the total capacity is finite
infinite is strictly first order, the order parameterF* jumping
from zero to unity as some parameter is varied. The seco
order nature of the geometric bond percolation problem
thus a unique feature of the fact that allowing infinite velo
ties effectively destroys the connectivity of the underlyi
tree. One can, in fact, cast the geometric problem in suc
way that it too exhibits a first-order rather than second-or
transition, by noting that the probability that an infinite clu
ter exists somewhere on the tree forp.pc is 1 ~although the
origin may not, of course, belong to it if the tree is suitab
disconnected!.

We now have the basis for analyzing more general m
els of percolation on tree structures. Consider once again
above Bernoulli distribution, but this time choosev̄ to be
finite. Definee5e2 v̄ . The transition criterionz^e2s* v&51
yields a critical transition probability of

pc5
12ze

z~12e!
. ~4.2!

The physical interpretation of this two-component model
percolation is as follows. One has an infinite, regular t
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along the branches of which some flow process is tak
place. Some branches are relatively open~those with
v50!; others are very constrictive~those withv5 v̄!. The
constrictive links affect other links downstream from the o
gin; this is taken into account through the multiplicative n
ture of the model. Ifp,pc then flow between the origin an
infinity is impossible. On the other hand, ifp.pc , then
finite flow will occur with probability 1. Note the emphasi
‘‘will occur’’ rather than ‘‘might occur,’’ since the transition
is now strictly first order rather than second order. This
terpretation in terms of flows is quite natural, given the de
vation of some of our results in terms of flow theory o
networks and an obvious natural connection to random re
tive or capacitive networks. From the above model we n
that as e→0 (v̄→`), so pc→1/z ~the geometric limit!,
while for e>1/z ( v̄< lnz) no transition is possible~the sys-
tem is always percolating!. Many alternative models of per
colating processes can be studied by choosing different
locity densitiesr(v), and details of the behavior on th
nonpercolating~localized! side of the transition point may b
obtained from the integral equation~3.21!. Exploring the
consequences of this connection with percolation theory
serves further study.

Finally, the theorems derived by Lyons have implicatio
for percolation on trees with random branching numbers
each branching site. First, one creates the underlying
structure upon which percolation is to take place. Supp
we have a local branching probabilitypk with (kpk51.
From the theory of genealogical trees associated w
Galton-Watson branching processes@20#, we know that the
tree will always be finite in extent~extinction will occur with
probability 1! if m[(kkpk<1. Clearly such situations ar
not particularly interesting as regards percolation. Ifm.1
then the probability for generating an infinite~although ir-
regular! tree is nonzero~the probability of nonextinction is
greater than zero!, which is reminiscent of the second-ord
transition discussed above. Let us imagine that we havm
.1 and that we have generated an infinite, irregular tree.
pure geometric percolation, one now occupies the branc
with probabilityp or leaves them unoccupied with probab
ity 12p. The percolation threshold governing whether t
origin belongs to an infinite cluster is then given bypc
51/m @17#. More generally, the full transition criterion be
.
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comesm^e2s* v&51. Thus in the case of the above two
component model defined on a genealogical tree of a Gal
Watson process, we would have

pc5
12me

m~12e!
. ~4.3!

V. CONCLUSIONS

In this paper we have examined drift diffusion on a reg
lar tree with quenched, random drift velocities on
branches, and derived criteria for whether the system is
calized or delocalized, given an arbitrary distribution for t
drift velocities. We have also presented examples of how
system can undergo a phase transition from a localized
delocalized state as some parameter defining a family of
locity distributions is varied. Such transitions are generica
first order rather than second order. A formal link with co
ventional percolation theory has been made, and we h
indicated how some~but not all! of the results can be ex
tended to the case of irregular trees.

Once one has established that, for a given velocity den
r(v), the system is localized, it is natural to ask questio
about the nature of the localized state. For example, wha
the distribution of the residual amplitude at the origin, giv
an initial unit impulse? Or, can one define a suitably av
aged localization length? Or, to what extent is self-averag
relevant in the system? We have not attempted to ans
these questions in this paper, although the integral equat
we have presented provide a natural starting point as reg
the first of them. Direct numerical simulation is an obvio
approach, but this is not straightforward, especially for s
tems that are ‘‘only just localized’’~it is extremely difficult
to establish whether a system is localized or delocalized n
the phase boundary by numerical methods!. This is one rea-
son why having exact mathematical criteria for the transit
points is so valuable.

Finally, the results presented relate to the convergenc
otherwise of quite general random, multiplicative sequen
with an underlying treelike structure. As such, we feel th
they are likely to be applicable to many other physical pro
lems besides the one considered here.
,
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